Forbidden Berge Hypergraphs
نویسندگان
چکیده
A simple matrix is a (0,1)-matrix with no repeated columns. For a (0,1)-matrix F , we say that a (0,1)-matrix A has F as a Berge hypergraph if there is a submatrix B of A and some row and column permutation of F , say G, with G 6 B. Letting ‖A‖ denote the number of columns in A, we define the extremal function Bh(m,F ) = max{‖A‖ : A m-rowed simple matrix and no Berge hypergraph F}. We determine the asymptotics of Bh(m,F ) for all 3and 4-rowed F and most 5-rowed F . For certain F , this becomes the problem of determining the maximum number of copies of Kr in a m-vertex graph that has no Ks,t subgraph, a problem studied by Alon and Shikhelman.
منابع مشابه
Turán numbers for Berge - hypergraphs and related 1 extremal problems
4 Let F be a graph. We say that a hypergraph H is a Berge-F if there is a bijection 5 f : E(F )→ E(H) such that e ⊆ f(e) for every e ∈ E(F ). Note that Berge-F actually 6 denotes a class of hypergraphs. The maximum number of edges in an n-vertex r-graph 7 with no subhypergraph isomorphic to any Berge-F is denoted exr(n,Berge-F ). In this 8 paper we establish new upper and lower bounds on exr(n,...
متن کاملTurán numbers for Berge-hypergraphs and related extremal problems
Let F be a graph. We say that a hypergraph H is a Berge-F if there is a bijection f : E(F )→ E(H) such that e ⊆ f(e) for every e ∈ E(F ). Note that Berge-F actually denotes a class of hypergraphs. The maximum number of edges in an n-vertex r-graph with no subhypergraph isomorphic to any Berge-F is denoted exr(n,Berge-F ). In this paper we establish new upper and lower bounds on exr(n,Berge-F ) ...
متن کاملPolynomial Delay and Space Discovery of Connected and Acyclic Sub-hypergraphs in a Hypergraph
In this paper, we study the problem of finding all connected and Berge-acyclic sub-hypergraphs contained in an input hypergraph with potential applications to substructure mining from relational data, where Berge acyclicity is a generalization of a tree and one of the most retricted notion of acyclicity for hypergraphs (Fagin, J. ACM, Vol.30(3), pp.514–550, 1983). As main results, we present ef...
متن کاملHypergraph Extensions of the Erdos-Gallai Theorem
Our goal is to extend the following result of Erd˝ os and Gallai for hypergraphs: Theorem 1 (Erd˝ os-Gallai [1]) Let G be a graph on n vertices containing no path of length k. Then e(G) ≤ 1 2 (k − 1)n. Equality holds iff G is the disjoint union of complete graphs on k vertices. We consider several generalizations of this theorem for hypergraphs. This is due to the fact that there are several po...
متن کاملA Dirac-type theorem for Hamilton Berge cycles in random hypergraphs
A Hamilton Berge cycle of a hypergraph on n vertices is an alternating sequence (v1, e1, v2, . . . , vn, en) of distinct vertices v1, . . . , vn and distinct hyperedges e1, . . . , en such that {v1, vn} ⊆ en and {vi, vi+1} ⊆ ei for every i ∈ [n − 1]. We prove a Dirac-type theorem for Hamilton Berge cycles in random r-uniform hypergraphs by showing that for every integer r ≥ 3 there exists k = k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 24 شماره
صفحات -
تاریخ انتشار 2017